

for a living planet®

Sharing the effort under a global carbon budget

OUR MISSION: A SUSTAINABLE ENERGY SUPPLY FOR EVERYONE

Ecofys Germany GmbH Am Wassermann 36 50829 Köln Germany

W: www.ecofys.de T: +49 (0) 221 270 70 100 F: +49 (0) 221 270 70 011 E: info@ecofys.de

Sharing the effort under a global carbon budget

Niklas Höhne Sara Moltmann

24 August 2009

Commissioned by: WWF International

PECSDE082855 PECPDE083519

OUR MISSION: A SUSTAINABLE ENERGY SUPPLY FOR EVERYONE

WWF foreword

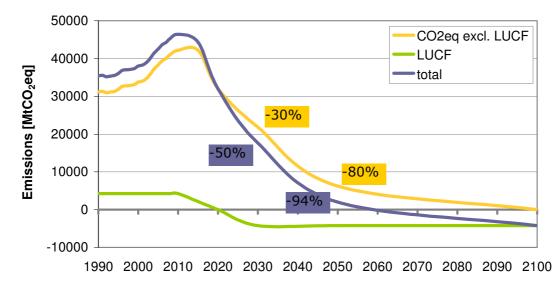
In order to avoid dangerous climate change there is a growing consensus among now more than 120 countries that average global temperatures should not increase by more than 2°C over pre-industrial levels. This was affirmed in July of this year by the G8+5 nations, a group of countries encompassing all major emitters from the developed and developing world. This is a giant leap forward and provides large hope for success of the ongoing negotiations for a post-2012 treaty to be agreed in Copenhagen at the Climate Summit in December this year.

How can this objective be met? WWF and other members of the Climate Action Network (CAN) are strongly promoting a legally binding mid-term target of at least 40% emissions reductions by 2020 below 1990 levels for developed countries as a group, under common but differentiated responsibilities that require nations that are rich and have high per capita emissions to 'pay back' their atmospheric debt. Globally, all countries need to have reduced their total greenhouse gas emissions by at least 80% below 1990 levels by 2050 in order for the world to stay below 2°C of warming.

The emissions trajectory between now and 2050 needs to be distributed in an equitable way with the appropriate distinctions made between 'rich' and 'poor' and between 'high' and 'low' per capita emitters. To inform the international debate, WWF asked the leading energy research consultancy ECOFYS to elaborate on the practicalities and implications of some suggested methodologies already under discussion and some that are promising and should receive consideration.

As well as the need for an 80% cut in emissions globally by 2050, another requirement taken into account by the research was the need to cut global emissions by 30% over 1990 levels by 2030 – a feasible as well as necessary target according to a recent climate action cost calculation, the McKinsey Climate Cost Curve 2.0. Also, land use factors globally need to turn from being a net source of CO_2 to becoming a net sink between 2020 and 2030, with major reductions required in emissions from deforestation and clearing in the tropics. Action at this level could ensure the entire world becomes a net emissions sink post 2060.

Although WWF has strong sympathy with the Greenhouse Gas Development Right Framework to distribute the allowable emissions in a social and equitable way in the next decades, at this point in time WWF is not promoting any particular approach to distribute the finite global greenhouse gas budget between 1990 and 2100. But whichever approach the world chooses in order to stay below 2°C, the cumulative greenhouse gas budget cannot change substantially. If we relax on the trajectory of one country, another country needs to pick up the bill. There is no carbon offset for Planet Earth as such. We know, decarbonising the economy in the next 50 years or so will be tough for most nations – and let us be very honest – particularly for many rapidly industrialising nations.


However, unabated climate change will cost much more socially, economically and environmentally. It will wreak havoc on global food security and freshwater availability, and its impacts will be disproportionately felt by poor and vulnerable communities. What WWF seeks to do with this paper is to kick-start a debate on how to globally share the carbon budget consistent with a trajectory to keep global warming below 2°C. This is not about burden sharing – this is about benefit sharing. Compared to unabated climate change, perceived economic 'hardship' is a luxury problem.

Stephan Singer Director, Global Energy Policy WWF International Kim Carstensen Leader, Global Climate Initiative WWF International

Executive summary

Stringent global greenhouse gas emission reductions by all sectors and all countries will be necessary to keep global average temperature increase below 2°C. This report gives an overview of different methods to share the effort of reducing greenhouse gas emissions between countries to reach a given global carbon budget by 2100 in line with the 2°C limit.

First, we defined the carbon budget, which is the amount of tolerable global emissions over a period of time. Afterwards, we divided the available emission rights among countries according to different rules. To be consistent with the 2°C limit, for this report we assume CO_2 eq emissions will have to be reduced by 30% compared to 1990 levels by 2030. By 2050 global emissions excluding those from land-use change and forestry (LUCF) need to be reduced by 80% compared to 1990. This leads to an emission budget of roughly 1800 GtCO₂eq between 1990 and 2100 excluding LUCF. Further, we assume that emissions from LUCF remain constant at about 4 GtCO₂ until 2010 and decline to zero by between 2010 and 2020. LUCF will become a stable net sink of emissions afterwards. By 2030 LUCF will remain at -4 GtCO₂. The global emission budget including LUCF will, thus, be about 1600 GtCO₂eq. This is the budget between 1990 and 2100. Until today and because mankind has already increased its global emissions substantively since 1990, the remaining net cumulative budget between 2009 and 2100 is limited to 870 GtCO2eq. This translates to an allowable global annual emission on average for the next 91 years of no more than 9.5 GtCO₂eq, or about 20% of today's annual net global emissions.

Figure 1. Possible global GHG emissions pathway between 1990 and 2100 according to a global carbon budget of about 1800 Mt CO_2eq (excl. LUCF) and 1600 Mt CO_2eq (incl. LUCF)

Under this strict emission budget, delay in reductions of only 5 years has significant consequences. Starting absolute global emission reductions around the year 2015 requires global average annual emissions reductions of about 5%, which already is very ambitious. Starting absolute global reduction in 2020 requires a global annual reduction of 8% after 2020.

The requirements to reach this are very stringent (see Figure 2). This is also reflected by the resulting target of about 0.5 tCO_2 eq per capita as global average in 2050. In

2020 the average per capita emissions are around 9 tCO_2 eq per capita for Annex I and 3-5 tCO_2 eq per capita for non-Annex I.

We have shared the global emission budget using three methodologies, which are currently under discussion:

- Greenhouse Development Rights (GDRs): All countries need to reduce emissions below their business as usual path based on their responsibility (cumulative emissions) and capacity (GDP). Only emissions and GDP of the population above a development threshold account towards responsibility and capability.
- Contraction and Convergence (C&C): The targets for individual countries are set in such a way that per capita emission allowances converge from the countries' current levels to a level equal for all countries within a given period, here until 2050.
- Common but Differentiated Convergence (CDC): As above, targets are set so
 per capita emissions for all countries converge to an equal level over the period
 2010 to 2050. For developed (Kyoto Protocol Annex I) countries' per capita
 emission allowances convergence starts immediately. For individual non-Annex
 I countries' per capita emissions convergence starts from the date when their
 per capita emissions reach a certain percentage threshold of the (gradually
 declining) global average.

Generally, the Greenhouse Development Rights approach (GDRs) allows negative emissions where required reductions based on capacity and responsibility are larger than business as usual emissions. Contraction and Convergence (C&C) and Common But Differentiated Convergence (CDC) allow only very low but not negative emission levels. Therefore, Annex I emission targets go to -60% in 2020 under the GDRs, while the other approaches require around -40%.

Negative emission allowances (below 100% of base year) do not mean that the respective countries have to mitigate everything domestically. This is just a method of illustrating the equitable emissions allocations under this methodology. In reality it means that industrialised countries have to substantially support reducing emissions in developing countries via the carbon market, technology and/or funding etc.

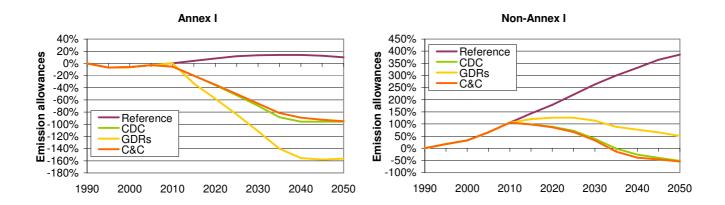


Figure 2. Development of emission allowances for Annex I countries and Non-Annex I countries between 1990 (0%) and 2050 under the effort sharing approaches CDC, GDRs and C&C

Developing countries in general and economies in transition (EITs) have more room to grow under GDRs than under the other approaches. The main reasons for this are the relatively low per capita emissions combined with limited financial capacity.

Least Developed Countries (LDCs) are almost all exempt from emission reduction requirements under GDRs, while under C&C they are granted little more allowances than their reference emissions until 2020 and face reduction obligations after 2025. Under CDC they face reductions after 2030.

Cumulative emissions per capita vary considerably under C&C and CDC for Annex I and non-Annex I. For GDRs some non-Annex I countries are even granted higher per capita cumulative emissions than some countries of Annex I.

Under GDRs, non-Annex I countries are allowed to increase their total emissions and peak until 2025 and then need to reduce them to roughly today's level in 2050 (about 50% above 1990). Under C&C and CDC there is less room for growth and their emissions need to be at a third of today's emissions (half of 1990's emissions). This is particularly reflected in the case of China and India. Both countries would be entitled under GDR to grow their emissions by 10% and even 240%, respectively, by 2050 compared to 1990, while being required to reduce by more than 70% and about 2-7% in the same period under the other two models.

Table of contents

1	Introduction	10
2	Global carbon budget	11
3	Global effort sharing1	13
3.1	Parameters	13
3.1.	1 Greenhouse development rights (GDRs)	13
3.1.	2 Contraction and convergence (C&C)	14
3.1.	3 Common but differentiated convergence (CDC)	15
3.1.	4 Overview of all considered effort-sharing approaches	17
3.2	Results	18
4	Conclusions	26
Ref	erences	27
Арр	endix A Description of the EVOC tool	28
Арр	endix B Emission allowances distributed with EVOC	33
Арр	endix C Comparison of data from EcoEquity and EVOC	39

List of Abbreviations

BAU	Business as usual
С	Capacity
C&C	Contraction and Convergence
CDC	Common but differentiated convergence
CDM	Clean development mechanism
CO ₂ eq	Carbon dioxide equivalents
EIT	Economies in transition
GDP	Gross domestic product
GDRs	Greenhouse Development Rights
LDC	Least developed country
LUCF	Land-use change and forestry
R	Responsibility
RCI	Responsibility Capacity Index
UNFCCC	United Nations Framework Convention on Climate Change
USD	United States dollar

1 Introduction

Further action is needed that goes far beyond what has been agreed so far under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol to "prevent dangerous anthropogenic interference with the climate system", the ultimate objective of the UNFCCC. It is beyond question that developed countries (Annex I countries) will have to take a leading role. They will have to commit to substantial emission reductions and financing commitments due to their historical responsibility and their financial capability. However, the stabilisation of the climate system will require global emissions to peak within the next decade and decline well below current levels by the middle of the century. It is hence a global issue and, thus, depends on the participation of as many countries as possible.

More than 120 countries, including the European Community and many developing nations particularly LDC and Small Island Nations, and numerous development, social justice and environmental NGOs have agreed that global average temperature increase should be limited to 2°C above pre-industrial levels to avoid such dangerous interference. Recent proposals, e.g. of the Alliance of Small Island States, now call for 1.5°C. The risk that a stable greenhouse gas concentration of e.g. 450 ppmv CO₂eq would result in global average temperature above 2°C in the long term is around 50%. At 400 ppmv CO₂eq, the risk is 30% (Meinshausen 2005). Consequently, global emissions have to peak in the next 15 years and decline well below the 1990 level in 2050 and further thereafter.

Under the principle of "common but differentiated responsibilities", one of the guiding principles stipulated in Article 3.1 of the UNFCCC, developed countries (so called Annex I Parties) take the lead in reducing emissions and developing countries (Non-Annex I Parties) act to protect the climate system on the basis of equity and in accordance with the common but differentiated responsibilities and respective capabilities. Current international climate negotiations center around "mitigation commitments and actions" for developed countries and "nationally appropriate mitigation actions" for developing countries.

Developing countries have a lower historical responsibility for climate change but some are already or will become important emitters. A less carbon intensive development path will have positive effects on these countries' sustainable development and on the global climate system. On the one hand, climate change action will contribute directly to achieving sustainable development objectives, such as energy security, sustainable economic development, technology innovation, job creation, local environmental protection and enhancement of capacity to adapt to climate change impacts. On the other hand, especially developing countries will benefit from a more stable global climate because they are the most vulnerable to climate change effects.

In this report for WWF International Ecofys analyses emission allowances for different groups of countries until 2050 under a given carbon budget between 1990 and 2100. The analysed approaches consider all countries but give different weight to Annex I and non-Annex I efforts.

We first describe the carbon budget and the methodology used (Chapter 2), then we briefly describe the considered effort sharing approaches (Chapter 3). Afterwards, we present the results as emission allowances per group under the different effort sharing approaches (Chapter 3.2). Finally, we give a short conclusion of this analysis. Detailed data and a description of the used calculation model (EVOC) are included in the Appendix.

2 Global carbon budget

Different approaches exist for global effort sharing of greenhouse gas emission reductions. One possibility is to define the carbon budget, which is the global amount of tolerable emissions over a period of time. Afterwards the available emission rights can be divided among countries according to different rules. To come close to 2° limit, for this report we assume CO₂eq emissions will have to be reduced by 30% compared to 1990 levels by 2030. By 2050 global emissions excluding LUCF need to be reduced by 80% compared to 1990. This leads to an emission budget of roughly 1800 Gt CO_2 eq between 1990 and 2100.

As emissions from land use change and forestry (LUCF) are known only with considerable uncertainty, we took simplifying assumptions about current and future emissions from this sector. We assume that emissions from land-use change and forestry (LUCF) remain constant at about 4 GtCO₂ until 2010 and decline to zero by between 2010 and 2020. Due to reducing deforestation and increasing re- and afforestation LUCF will have to become a net sink of emissions afterwards (see Figure 3 and Table 1 below). We assume that after 2030 LUCF will remain at -4 GtCO₂. The global emission budget including LUCF will, thus, be about 1600 GtCO₂eq between 1990 and 2100.

Because mankind has already increased its global emissions substantively since 1990, the remaining net cumulative budget between 2009 and 2100 is limited to 870 GtCO₂eq. This translates to an allowable global annual emission on average for the next 91 years of no more than 9.5 GtCO₂eq, or about 20% of today's annual net global emissions.

In order to stay within the boundary of the global GHG budget, sometime from 2060 onwards, net global emissions must be negative (little emissions from energy use and larger sequestration of carbon from forests and other technologies).

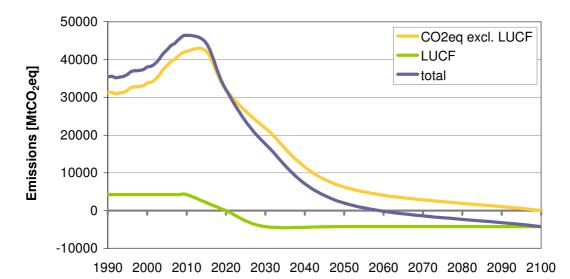
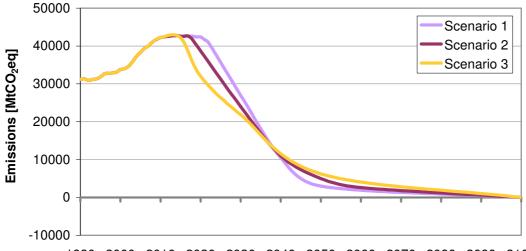



Figure 3. Possible global GHG emissions pathway between 1990 and 2100 according to a global carbon budget of about 1800 Mt CO₂eq (excl. LUCF) and 1600 Mt CO₂eq (incl. LUCF)

	2030 emissions	2050 emissions		Cumula	ative emi	issions	
	[% change	[% change	1990-	2009-	1990-	2010-	1990-
	from 1990]	from 1990]	2008	2100	2050	2050	2100
CO₂eq excl. LUCF	-30%	-80%	650	1160	1660	970	1820
LUCF	-200%	-200%	80	-290	0	-80	-210
Total emissions	-50%	-94%	730	870	1660	880	1600

Table 1. Assumption on cumulative GHG emissions between 1990 and 2100

Generally, one can imagine different pathways to reduce emissions that satisfy the same budget. Figure 4 gives an example of three different emission paths. The yellow path requires absolute global emission reduction comparatively early around the year 2015. The required average annual emissions reduction is about 5%. The medium path (dark violet) starts absolute emission reduction about 2-3 years later. The annual reduction rate is similar about 6%. The third path (light violet) requires absolute global reduction in 2020. As a result also the annual reduction of 8% after 2020 is more challenging to achieve a global carbon budget that is comparable with the yellow path of early reduction.

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Figure 4. Sensitivity of possible global GHG emissions pathway excl. LUCF	
between 1990 and 2100	

Scenario	2030 emissions [% change from 1990]	2050 emissions [% change from 1990]	Cumulative emissions 1990-2050	Cumulative emissions 1990-2100	
Scenario 1	-13%	-80%	~1750	~1830	
Scenario 2	-30%	-80%	~1670	~1830	
Scenario 3	-23%	-84%	~1700	~1830	

Table 2. Cumulative GHG emissions excl. LUCF between 199	0 and 2100
--	------------

3 Global effort sharing

3.1 Parameters

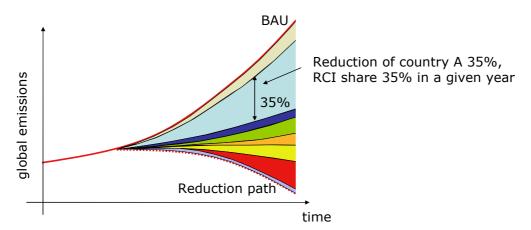
This section presents the parameters applied for three possible future methodological architectures consistent with the considered global carbon budget. This means that the calculation outcomes have to meet the global reference emissions of -30% compared to 1990 levels in 2030 and -80% in 2050 mentioned above. The following approaches are included in the calculation of emission allowances:

- Greenhouse Development Rights
- Common but Differentiated Convergence
- Contraction and Convergence by 2050

For this comparison of the emission rights under different distribution approaches in a future architecture the Evolution of Commitments tool (EVOC) is used. A detailed description of the EVOC model is included in Appendix A.

3.1.1 Greenhouse development rights (GDRs)

The Greenhouse Development Rights (GDRs) approach to share the effort of global greenhouse gas emissions reduction was developed by Baer et al. (Baer et al. 2007, 2008; cp. also Niklas Höhne and Sara Moltmann 2008). It is based on three main pillars:


The right to develop: Baer et al. assume the right to develop as the essential part for any future global climate regime in order to be successful. Therefore a development threshold is defined. Below this level individuals must be allowed to make development their first priority and do not need to contribute to the global effort of emission reduction or adaptation to climate change impacts. Those above this threshold will have to contribute regardless their nationality. This means that individuals above this threshold will have to contribute even if they live in a country that has an average per capita income below this level. The level for this development threshold would have to be matter of international debate. However Baer et al. 2008 suggest an income-level of \$7,500 per capita and year. Based on this, the effort sharing of the GDRs is based on the capacity and the responsibility of each country.

Capacity: The capacity (C) of a county is reflected by its income. The income distribution among individuals is taken into account by the gini coefficient of a country. A gini coefficient close to 1 indicates low equality while a value close to 0 indicates a high equality in income distribution. As the countries capacity is needed to define percountry emission allowances the sum of income of those individuals per country above the development threshold is summed and considered to calculate each countries capacity.

Responsibility: The responsibility (R) is based on the "polluter pays" principle. For the GDRs according to Baer et al. it is measured as cumulative per capita CO_2 emissions from fossil fuel consumption since 1990. However, it should be distinguished between survival emissions and luxury emissions. Baer et al. assume that emissions are proportional to consumption, which again is linked to income. Emissions related to that share of income below the development threshold are equivalent to the part of national income that is not considered in calculating a countries capacity. Therefore, they shall be considered as survival emissions. Those emissions linked to income above the development threshold are luxury emissions and shall account for a countries responsibility.

Allocation of emission rights: The allocation of emission reduction obligations and resulting emission rights is based on each country's responsibility and capacity, combined in the Responsibility Capacity Index (RCI). This is defined as $RCI = R^a \cdot C^b$, where *a* and *b* are weighting factors. Baer et al. assume and equal weighting of 0.5 for *a* and 0.5 for *b*. This gives capacity and responsibility an equal weighting.

Two global emissions development paths are considered. First, the business-as-usual (BAU) case and second the reduction path necessary to reach the emission level in order to stabilise global emissions (see Figure 5). The difference of these two is the amount of emissions that need to be reduced globally. Each country's annual share of this reduction is determined by the relative share of its RCI compared to the sum of RCIs of all other countries.

Figure 5. Effort sharing under the Greenhouse Development Rights (GDRs) approach according to the Responsibility Capacity Index (RCI)

Table 3 includes the parameters chosen for the calculations on the GDRs approach in this report.

Table 3. Parameters chosen for the Greenhouse Development Rig	hts
approach	

Parameter	Unit	
Development threshold	USD (2005) / capita / year	7,500
Start year for cumulative emissions		1990
Weighting of Capacity	%	50%
Weighting of Responsibility	%	50%

3.1.2 Contraction and convergence (C&C)

Under contraction and convergence (C&C) (GCI 2005; Meyer 2000), all countries participate in the regime with quantified emission targets. As a first step, all countries agree on a path of future global emissions that leads to an agreed long-term stabilisation level for greenhouse gas concentrations ('contraction'). As a second step, the targets for individual countries are set in such a way that per capita emission allowances converge from the countries' current levels to a level equal for all countries within a given period ('convergence'). The convergence level is calculated at a level that resulting global emissions follow the agreed global emission path. It might be more difficult for some countries to reduce emissions compared to others, e.g. due to

climatic conditions or resource availability. Therefore, emission trading could be allowed to level off differences between allowances and actual emissions. However, C&C does not explicitly provide for emission trading.

As current per capita emissions differ greatly between countries some developing countries with very low per capita emissions, (e.g. India, Indonesia or the Philippines) could be allocated more emission allowances than necessary to cover their emissions (some call this "tropical hot air"). This would generate a flow of resources from developed to developing countries if these emission allowances are traded.

To meet the global emission path of -30% (2030) and -80% (2050) a convergence at about 0.6 to 0.7 tCO₂eq per capita in 2050 is necessary (see Table 4). In this case the average per capita emissions will have to lie around 4.5 tCO₂eq per capita in 2020.

per scenario)						
Scenario	Average in 2020 [tCO2eq/cap]	Convergence level in 2050 [tCO2eq/cap]				
A1B	4.66	0.70				
A1FI	4.67	0.70				
A1T	4.61	0.73				
A2	4.22	0.58				
B1	4.39	0.74				
B2	4.46	0.69				

Table 4. Convergence levels of per capita emissions rights in tCO_2eq/cap in 2050 (the global emission level is the same but global population is different per scenario)

3.1.3 Common but differentiated convergence (CDC)

Common but differentiated convergence (CDC) is an approach presented by Höhne et al. (2006). Annex I countries' per capita emission allowances converge within, e.g., 40 years (2010 to 2050) to an equal level for all countries. Individual non-Annex I countries' per capita emissions also converge within the same period to the same level but convergence starts from the date, when their per capita emissions reach a certain percentage threshold of the (gradually declining) global average. Non-Annex I countries that do not pass this percentage threshold do not have binding emission reduction requirements. Either they take part in the CDM or they voluntarily take on positively binding emission reduction targets. Under the latter, emission allowances may be sold if the target is overachieved, but no emission allowances have to be bought if the target is not reached.

The CDC approach, similarly to C&C, aims at equal per capita allowances in the long run (see Figure 6). In contrast to C&C it considers more the historical responsibility of countries. Annex I countries would have to reduce emissions similarly to C&C, but many non-Annex I countries are likely to have more time to develop until they need to reduce emissions. Non-Annex I country participation is conditional to Annex I action through the gradually declining world average threshold. No excess emission allowances ("hot air") would be granted to least developed countries.

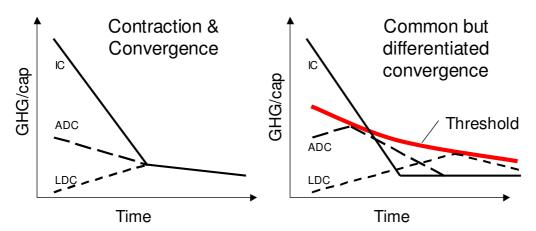


Figure 6. Schematic representation of GHG emissions per capita for three types of countries (an industrialized country (IC), an advanced developing country (ADC) and a least developed country (LDC)) under contraction and convergence (left) and under common but differentiated convergence (right)

The parameters for the convergence time, the threshold for participation and the convergence level used in this report are provided in Table 5.

Table 5. Parameters used for the Common but Differentiated Convergence	
approach	

Parameter	Unit	A1B	A1FI	A1T	A2	B1	B2
Convergence time	Years	27	27	27	27	27	27
Threshold	% difference from world average	-35%	-35%	-35%	-31%	-22%	-24%
Convergence level	tCO ₂ eq/cap	0.64	0.64	0.64	0.42	0.51	0.52

3.1.4 Overview of all considered effort-sharing approaches

Table 6 below gives a short overview on strengths and weaknesses of the considered effort-sharing approaches Greenhouse Development Rights (GDRs), Contraction and Convergence (C&C) and Common but Differentiated Convergence (CDC).

	Strengths	Weaknesses
GDRs	 Uses historical emissions and GDP above a development threshold for differentiation Uses share of wealthy population in a country as indicator for required action by that country Assigns responsibility to reduce emissions abroad Participation of all countries with the same rules Includes cost-effective reduction options in developing countries through full international emissions trading 	 Reduction below BAU assumes that the BAU is equitable Possibly too simple and not considering detailed national circumstances
C&C	 Emphasis on a common endpoint: equal per capita emissions - does not require BAU Participation of all countries with the same rules Simple, clear concept Includes cost-effective reduction options in developing countries through full international emissions trading Support for least developed countries through excess emission rights 	 Current per capita emissions is the only criterion for differentiation, does not consider differences in historical responsibility National circumstances (including historical responsibility) not accommodated (optionally countries within one region can redistribute allowances to accommodate national concerns) Substantial reduction for countries with high per capita emissions, also such developing countries Also least developed countries need to be capable of participating in emissions trading to receive benefits (national greenhouse gas inventories and emission trading authorities)
CDC	 Emphasis on a common endpoint and equal path towards it: equal per capita emissions - does not require BAU Applies simple rules, thus, making approach transparent Delay of non-Annex I countries takes account of the responsibility for past emissions Eliminates the component of "hot air" (no excess allowances for low emission countries) 	 Per capita emissions is the only criterion for differentiation, but the delay of Non-Annex I countries accounts for differences in historical responsibility National circumstances not accommodated, except per capita emissions and current membership of Annex I Possibly too simple and not considering detailed national circumstances

Table 6. Strengths and weaknesses of the considered effort sharing	
approaches	

3.2 Results

This chapter presents the results for emission rights for different countries and regions under the effort sharing approaches described before.

As all calculations consider six different reference scenarios based on the Special Report on Emission Scenarios from the IPCC (SRES, Nakicenovic et al. 2000). These scenarios include different assumptions concerning growth of GDP, population and other important factors. The bars in the figures indicate the median of the results from all scenarios; the error bars show the highest and lowest values.

Figure 7 shows the emission allowances in 2020 and 2050 as percentage change from 1990 for different reduction approaches. Figure 8 and Figure 9 give the same data as percentage changes from business as usual (BAU) and as emissions per capita, respectively.

Figure 10 shows cumulative emissions between 1990-2020 and 1990-2050 under different effort sharing approaches divided by the population in 2020 and 2050, respectively. Figure 11 gives the cumulative emissions between 1990-2020 and 1990-2050 under the different effort sharing methods. Figure 12 and Figure 13 show the development of national emission allowances between 1990 and 2020 under CDC, GDRs and C&C for Annex I and non-Annex I, respectively. Cumulative emissions are divided by the absolute number of people in that year. For 2020 this means for example that emissions are added from 1990 to 2020 and are then divided by the population of 2020.

All calculations and results comprise emissions *exclude* LUCF. The global emission budget described in Chapter 2 can be met, if in addition emissions from LUCF also follow the path described there (reduction to zero in 2020 and turning to a net sink in 2030 with constant level afterwards). Including LUCF would lead to changes in the distributions, which could be significant for countries with high emissions and/or removals in this sector, e.g. Brazil, USA and Russia.

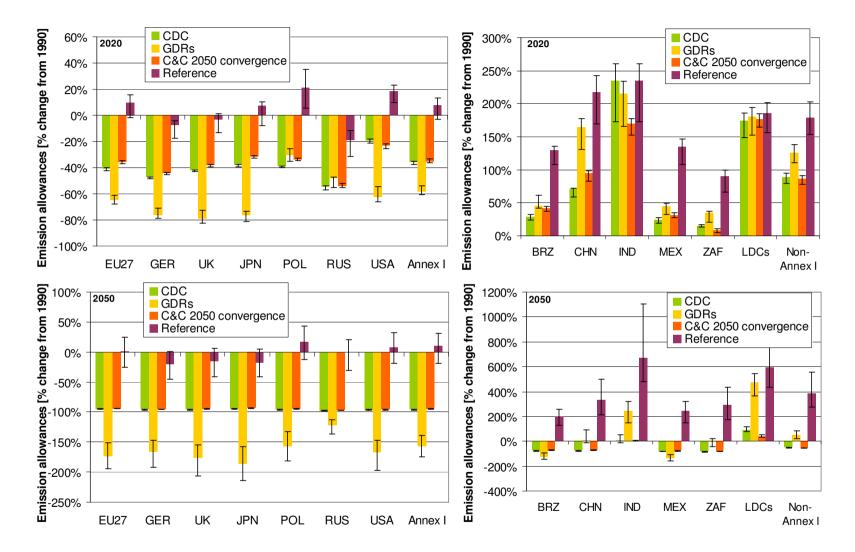
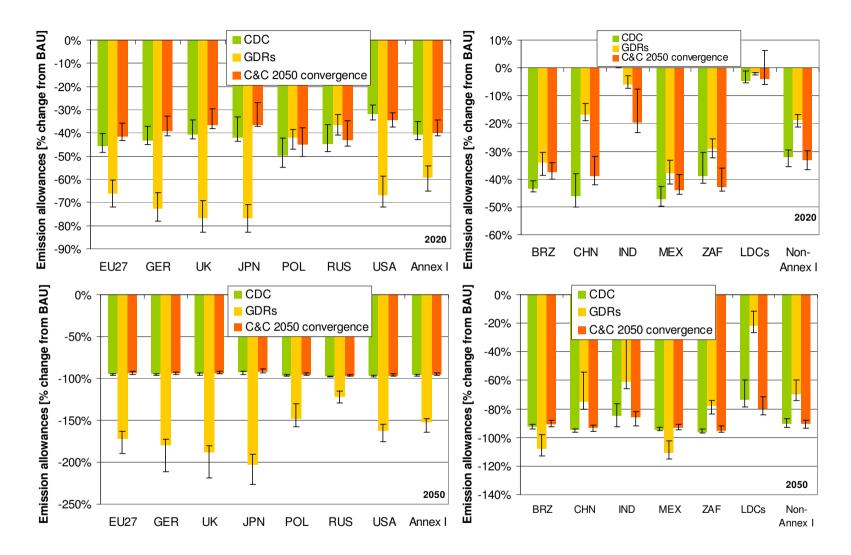



Figure 7. Emission allowances in 2020 and 2050 as percentage change from 1990 for different reduction approaches.

Figure 8. Emission allowances in 2020 and 2050 as percentage change from business as usual (BAU) for different reduction approaches.

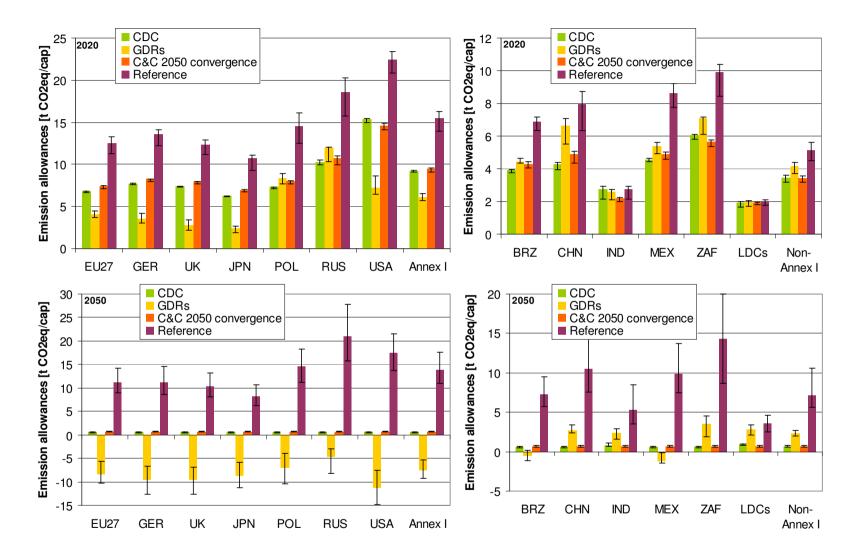
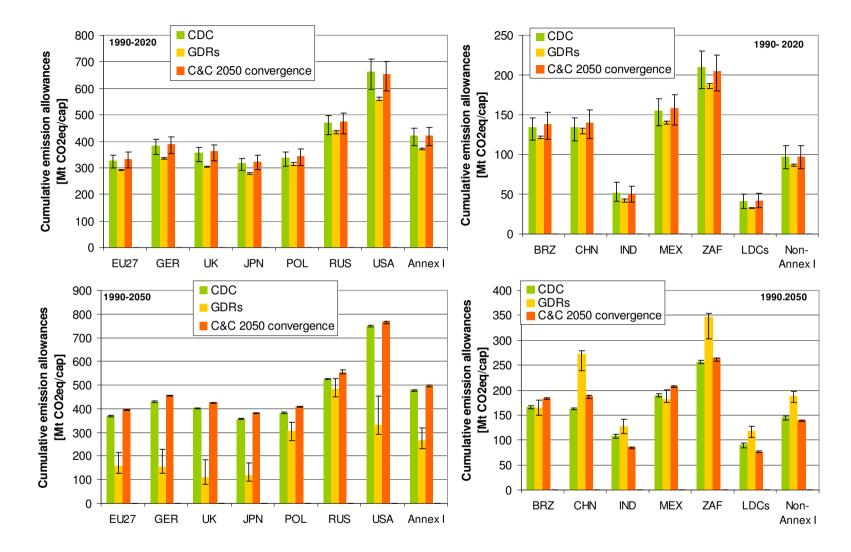



Figure 9. Emission allowances in 2020 and 2050 as emissions per capita for different reduction approaches.

Figure 10. Cumulative emission allowances (1990-2020 and 1990-2050) per capita (2020 and 2050) different reduction approaches.

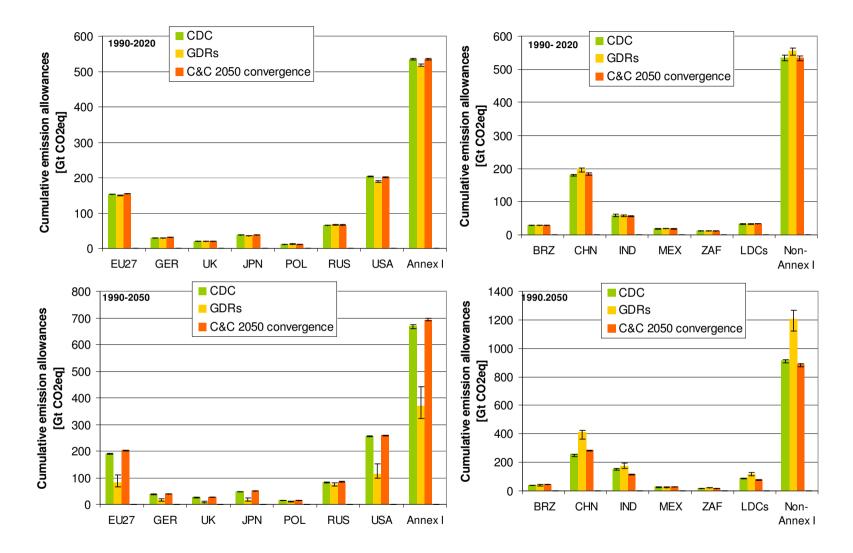


Figure 11. Cumulative emission allowances from 1990 to 2020 and 2050 for different reduction approaches.

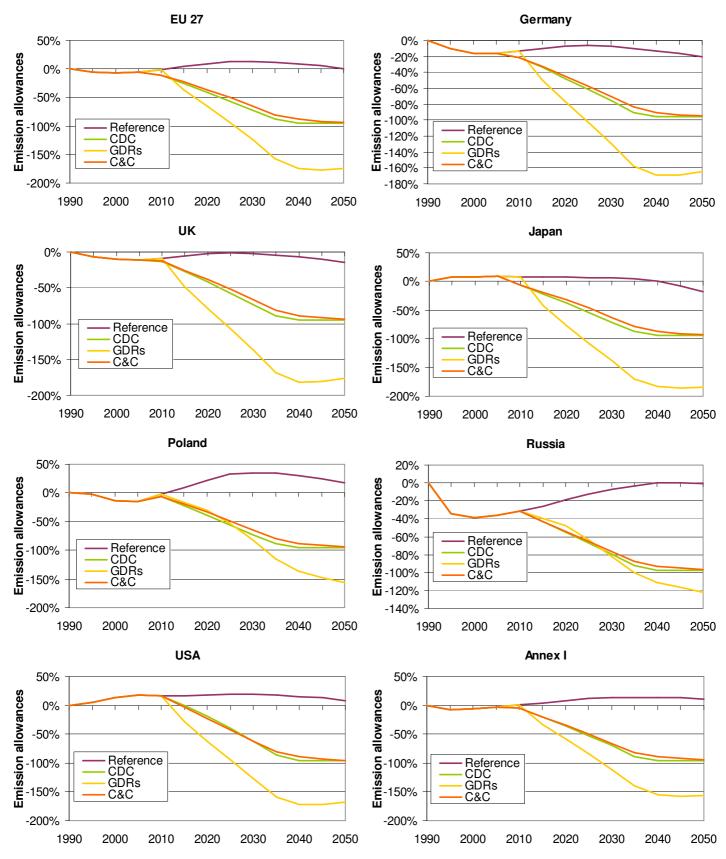


Figure 12. Development of national emission allowances as percentage change from 1990 emissions for Annex I between 1990 and 2050 under CDC, GDRs and C&C.

Figure 13. Development of national emission allowances as percentage change from 1990 emissions for non-Annex I and the world between 1990 and 2050 under CDC, GDRs and C&C.

4 Conclusions

The assumptions of -30% emission reduction below 1990 levels by 2020 and -80% by 2050 lead to a global GHG budget excluding LUCF of roughly 1800 Gt from 1990 to 2100. The requirements to reach this are very stringent. This is also reflected by the resulting target of about 0.5 tCO₂eq per capita as global average in 2050. In 2020 the average per capita emission lie around 9 tCO₂eq per capita for Annex I and 3-5 tCO₂eq per capita for non-Annex I.

Generally, the Greenhouse Development Rights approach (GDRs) allows negative emission where required reductions based on capacity and responsibility are larger than business as usual emissions. Contraction and Convergence (C&C) and Common but Differentiated Convergence (CDC) allow only very small but not negative emissions. Therefore, Annex I emission targets go to -60% in 2020 under the GDRs, while the other approaches require around -40%.

Hardly any differences can be seen for Annex I between C&C and CDC results. In the long term C&C leads to slightly less stringent results for high income and high emission countries.

By 2050, GDR requires Annex I countries as a group to reduce emissions by 157% and 'only' by 95% under C&C and CDC.

Developing countries and economies in transition (EITs) have more room to grow under GDRs than under the other approaches. The main reason for this is the relatively low per capita emissions combined with limited financial capacity.

LDCs are almost all exempt from emission reduction requirements under GDRs (+ >450% by 2050), while under C&C they are granted little more allowances then their reference emissions until 2020 and face reduction obligations after 2025. Under CDC they face reductions after 2030.

Cumulative emissions per capita vary considerably under C&C and CDC for Annex I and non-Annex I. For GDRs some non-Annex I countries are granted higher per capita cumulative emissions than some countries of Annex I.

Under GDRs, non-Annex I countries are allowed to increase their total emissions and peak until 2025 and then need to reduce them to roughly today's level in 2050 (about 50% above 1990). Under C&C and CDC there is less room for growth and their emissions need to be at a third of today's emissions (half of 1990's emissions). This is reflected particular in the case of China and India. Both countries would be entitled under GDR to grow their emissions by 10% and even 240%, respectively by 2050 compared to 1990 but would be required to reduce by >70% and about 2-7% in same period under the other two models.

References

- P. Baer, Athanasiou, T., and Kartha, S. (2007). The right to development in a climate constrained world. The Greenhouse Development Rights framework. Publication series on ecology, volume 1, Berlin: Heinrich-Böll-Foundation, Christian Aid, EcoEquity and the Stockholm Environment Institute.
- P. Baer, Athanasiou, T., Kartha, S., and Kemp-Benedict, E. (2008). *The Greenhouse Development Rights framework. The right to development in a climate constrained world.* Revised second edition. Publication series on ecology, volume 1, Berlin: Heinrich-Böll-Foundation, Christian Aid, EcoEquity and the Stockholm Environment Institute.
- GCI. (2005). GCI Briefing: Contraction & Convergence. Global Commons Institute.
- Höhne, N., M. G. J. den Elzen, and M. Weiss. (2006). Common but differentiated convergence (CDC), a new conceptual approach to long-term climate policy. *Climate Policy*, *6*, 181-199.
- R. A. Houghton. (2003). Emissions (and Sinks) of Carbon from Land-Use Change. (Estimates of national sources and sinks of carbon resulting from changes in land use, 1950 to 2000). Report to the World Resources Institute from the Woods Hole Research Center, Woods Hole, Massachusetts, USA: Woods Hole Research Center.
- IEA. (2008). CO2 Emissions from Fuel Combustion (2008 edition). International Energy Agency.
- IMAGE team. (2001). The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive analysis of emissions, climate change and impacts in the 21st century. CD-ROM publication 481508018, Bilthoven, the Netherlands:
- M. Meinshausen. (2005). On the risk of overshooting 2°C. Paper presented at the Scientific Symposium "Avoiding Dangerous Climate Change", MetOffice,
- A. Meyer. (2000). Contraction & convergence. The global solution to climate change. Schumacher Briefings, No. 5. Bristol, UK:
- N. Nakicenovic, Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Emilio la Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooyen, S., Victor, N., and Dadi, Z. (2000). *Special report on emissions scenarios.* Cambridge, UK: Cambridge University Press.
- Niklas Höhne and Sara Moltmann. (2008). Distribution of emission allowances under the greenhouse development rights and other effort sharing approaches. <u>http://www.boell.de/ecology/resources/resource-governance-ecology-5430.html</u>.
- J. G. J. Olivier and J. J. M. Berdowski. (2001). Global emissions sources and sinks. In Berdowski, J., Guicherit, R., and Heij, B. J. (Eds.), *The Climate System* pp. 33-78) A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands. ISBN 90 5809 255 0.
- UN. (2008). World Population Prospects: the 2008 revision. United Nations Department for Economic and Social Information and Policy Analysis, New York, USA.

UNFCCC. (2008). Greenhouse gas inventories submitted to the UNFCCC. UNFCCC.

USEPA. (2006). *Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 – 2020.* Appendix A-D, Washington, D.C., USA: United States Environmental Protection Agency. http://www.epa.gov/climatechange/economics/downloads/GlobalMitigationFullReport.pdf.

World Bank. (2008). World Development Indicators 2008. Washington D.C.: World Bank.

Appendix A Description of the EVOC tool

This section describes the Evolution of Commitments tool (EVOC) version 8, developed by Ecofys, that is used to quantify emission allowances under the various approaches in this report. It includes emissions of CO_2 , CH_4 , N_2O , hydroflourocarbons (HFCs), perflourocarbons (PFCs) and sulphur hexafluoride (SF₆) for 192 individual countries. Historical emissions are based on national emission inventories submitted to the UNFCCC and, where not available, other sources such as the International Energy Agency. Future emissions are based on the IPCC Special Report on Emissions Scenarios (Nakicenovic et al. 2000). The greenhouse gas emission data for 1990 to 2006 is derived by an algorithm that combines emission estimates from various sources.

We first collected historical emission estimates by country, by gas and by sector from the following sources and ordered them in the following hierarchy:

- 1. National submissions to the UNFCCC as collected by the UNFCCC secretariat and published in the GHG emission database available at their web site. For Annex I countries, the latest available year is usually 2004. Most non-Annex I countries report only or until 1994 (UNFCCC 2008).
- 2. CO_2 emissions from fuel combustion as published by the International Energy Agency. The latest available year is 2003 (IEA 2008).
- 3. Emissions from land-use change as published by Houghton in the WRI climate indicator analysis tool (Houghton 2003).
- 4. Emissions from CH_4 and N_2O as estimated by the US Environmental Protection Agency. Latest available year is 2005 (USEPA 2006)
- 5. CO_2 , CH_4 , N_2O , HFC, PFC and SF_6 emissions from the EDGAR database version 3.2 available for 1990 and 1995 (Olivier and Berdowski 2001).¹

Future emissions are derived from the MNP/RIVM IMAGE implementation of the SRES scenarios (IMAGE team 2001).

The datasets vary in their completeness and sectoral split. We first defined which of the sectors provided in the datasets correspond to 7 sectors. This definition is provided in Table 1. Note that CO_2 emissions from the IEA do not include process emissions from cement production. Hence, if IEA data is chosen, process emissions from cement production are not included.

For each country, gas and sector, the algorithm completes the following steps:

- 1. For all data sets, missing years in-between available years within a data set are linearly interpolated and the growth rate is calculated for each year step.
- 2. The data source is selected, which is highest in hierarchy and for which emission data are available. All available data points are chosen as the basis for absolute emissions.
- 3. Still missing years are filled by applying the growth rates from the highest data set in the hierarchy for which a growth rate is available.

 $^{^1}$ For CH₄ and N₂O, the values of EPA are largely based on the EDGAR database (1990 and 1995), but extended to the year 2000.

As future emissions are only available on a regional basis and not country-by-country, the resulting set of emissions is then extended into the future by applying the growth rates of the respective sectors and gas of the region to which the country belongs. (See Table 1 for detailed information on data sources and definition of sectors.)

For population, GDP in purchase power parities and electricity demand, the country base year data was taken from the United Nations (UN 2008), World Bank (2008) and IEA (2008), respectively. These data are extended into the future by applying the growth rates from the IMAGE model for the region to which the country belongs.

Emissions until 2010 are estimated as follows: It is assumed that Annex I countries implement their Kyoto targets by 2010. It is assumed that the reductions necessary to meet the Kyoto target are achieved equally in all sectors. In 2010, the level of the domestic sector is taken from the relevant reference scenario. The level of the other sectors are taken from the reference scenario and reduced, so that the Kyoto target is met. The years from the last available year to 2010 are linearly interpolated. All non-Annex I countries follow their reference scenario until 2010.

ional: poral:	country by country	-						
Gas:		Kegional:			Regional: country-by country			
14.7	1390 to 2002 (Various) CO2, CH4, N2O, HFCs, PFCs, SFB	Gas:	CO2, CH4, N2O; HFCs, PFCS, SF6	Gas: CH4, N20	Gas:	Gas:	Gas:	al: 15/U to 2100 CO2, CH4, N2O, HFCs, PFCs, SF6
	Manufacturing Industries and Construction Mineral Prinducts	E30	Industry Other transformation sectors			31 Other Energy Industries 401 Iron and Steel	ENERG	ENERGY 01 Industry ENERGY 07 Other energy transformation
	Chemical Industry	B10CH4N20	Biofuel industry CH4 N2O			402 Chemical and Petrochemical		11 Feedstocks
200	Metal Production	B30CH4N20	Biofuel charcoal production CH4 N2O			403 Non-Ferrous Metals		02 Industrial activities
	Other Production	92	Iron and steel			404 Non-Metallic Minerals		
	Uther (Industrial Processes)	8	Non-Terrous metals			405 Paper, Pulp and Printing AD5 Transnort Equipment		
		40	Building materials			406 Machinery		
		150	١ĕ			407 Mining and Quarrying		
		160	Food			408 Food and Tobacco		
		2	Solvent use/Miscellaneous			410Wood and Wood Products		
		8	Iransport evaporation			411 Construction		
		Leo	miscenariecus muusiry non-enerav use and feedstocks			413 Non-specified Industry		
		-	and a second sec			414 Non-Energy Use Ind/Transf/Energy	hergy	
						If the IEA data set is chosen, process emissions from industry (e.g. from cement) are not covered	cess emissions from industry (e	e.g. from cement) are not covered
Electricity	T a second for the state of a	861				AM Double Florende Av Direct		M OO TI's this second second second second
¥	Energy Industries	FZU R20CH4N2O	Power generation Riofinal movies researchion CHA NOC			11 Public Electricity Plants 13 Dublic CHD Plants	ENERG	ENERGY US Electric power generation
		A21110020				13 Public Heat Plants		
						14 Own Use in Electricity, CHP and heat plants	nd heat plants	
						21 Autoproducer Electricity Plants		
						23 Autoproducer Heat Plants		
Domestic		ŝ					Current	
	Iransport Other Sectors (Final Combination)	F4U	Residential, commercial and other sectors			51 Iransport 61 Other Sectore	ENERG	Y UZ Iransport V D3 Besidential (householde)
	Other (Firel Comhistion)		Transport tead			MB Memor International Marine Bunkers		Y 04 Services (commercial and public)
2E0	Production of Halocarbons and Sulphur Hexafluoride		Transport air (international and domestic)			AB Memo: International Aviation Bunkers	s	ENERGY 05 Agriculture and other enduse
	Consumption of Halocarbons and Sulphur Hexafluoride		Transport international shipping				ENERG	Y 09 Marine bunkers
	TOTAL Solvent and Uther Product Use		Biotuel residential CH4 N2U				FGAS	
	I CINE INDUSTIONAL DAILARIO	C10	HEC-byproc.					
			HFC use					
			PFC-byproc.					
			FFC use SF6 lise					
	Secotors in italics are excluded when the user chooses to exclude international transport							
Fossil fuel production	TOTAL Condition Francisco Condition	L'70				77 P.0.	E	
2		E80	Old production. transmission and handling	02 Coar production 03 Natural das production		/ I Dilleletices and in Ensees with		
		F90	Gas production and transmission	04 Oil production				
		F95	Fossil fuel fres					
Agriculture	TOTAL Anticulture	1 10	Fortilicar nea	OF Manure management			I AND 10	AND 10 wottand rice
		L15		07 Enteric fermentation			LAND 11	AND 11 animals
		L20	Enteric fermentation	08 Rice production			LAND 12	LAND 12 animal waste
		0E] 13	Animal waste management (confined N2O, all CH4)	09 Agricultural soils			LAND 1/	LAND 14 fertilizer
		16	Crop production				LAND 16	LAND 15 indirect tertilizer
		171	Animal waste management (deposited on soil- NZU) Atmospherit: denosition				LAND 10	LANU 16 Indirect animal waste LAND 17 cmm residues
		L75	Leaching and run-off				LAND 18	LAND 18 biological N-fixation
LUCF		2					0.014	
0	IUIAL Land-Use Change & Forestry	141	BB-Cevenus huming	1U biomass combustion	Land-Use		LAND OF	l biomass burning D huming of traditional hiomase / firalwood hi
		143	BB-Aaricultural waste burning				LAND 00	s timber pool (short lifetime)
		144	BB-Vergetation fires				I AND 02	4 timber and (land lifetime)
		L45	BB-deforestation post burn effects				LAND OF	carbon release by regrowing vegetation (-Ni
								LAND Ub agnouttural waste burning LAND 07 savanna burning
Waste								o land clearing
611	TOTAL Waste	W10	Landfills	11 Landfills			LAND 06	LAND 08 landfills
		W15	Humans/pers	12 Wastewater			LAND 03	3 (domestic) sewage
		0CM	Human waste disposal					
		W40	Waste incireration					
		M50	Miscelaneous waste handling (hazardous waste)					

Table 1. Data sources and definition of sectors

As a default setting, all Annex I countries are assumed to reach the lower of their Kyoto target and their reference scenarios in 2010. Only the USA is assumed to follow its BAU emissions until 2010. All non-Annex I countries also follow their reference scenario until 2010. After 2010, the emission allowances per country are calculated according to the effort sharing approaches.

A limitation of the tool is the unknown future development of emissions of individual countries. Here, we have used the standard set of future emissions scenarios, the IPCC SRES scenarios, as a basis. They provide a broad range of storylines and therefore a wide range of possible future emissions. We cover this full range of possible future emissions, economic and population development in a consistent manner. But the SRES scenarios are only available at the level of up to 17 regions (as in the IMAGE implementation) and scaling them down to individual countries introduces an additional element of uncertainty. We applied the growth rates provided for 17 world regions to the latest available data points of the individual countries within the respective regions. So, on the level of regions, we cover the full-range uncertainty about future emissions. When again aggregating the regions, the effect of downscaling cancels out. But the full level of uncertainty is not covered on the national level as substantial differences may exist for expected growth for countries within one of the 17 regions.

The future reference development of emissions, economic and population is affected by the starting values (which is data available from the countries or other international sources and which can be substantially different for countries in one region) and the assumed growth rates (which are derived from the 17 regions).

The assumed growth rates may affect the results of countries to a different extent. Some countries are less affected as they dominate their regional group, such as Brazil, Mexico, Egypt, South Africa, Nigeria, Saudi Arabia, China and India. It is for second or third largest countries in a region or for members of an inhomogeneous group, for which this method may lead to an over or underestimation of the future development.

Second or third largest countries in a region are e.g. Argentina, Venezuela, United Arab Emirates and South Korea. In the Contraction and Convergence approach, the error would be small as countries follow their reference scenario only until 2010 and converge afterwards. For Common but Differentiated Convergence and Multistage, the downscaling method may influence the time of participation. But the countries listed above would all participate at the earliest possible moment, based on their already today high per capita emissions. In the Triptych approach, growth in industrial and electricity production and a reduction below reference for agriculture is used, which may be affected by the downscaling method.

Members of an inhomogeneous group would be those of South East Asia, which includes Indonesia and the Philippines as lower-income countries and Malaysia, Singapore and Thailand as higher-income countries. Here the growth is averaged over the region, probably underestimated for Indonesia and the Philippines and overestimated for Singapore. The dominant element here is the starting point. The low per capita emissions of the Philippines and Indonesia lead to their late participation, while the high per capita emissions in Malaysia, Singapore and Thailand lead to their immediate participation. In the Triptych approach, growth in industrial and electricity production and a reduction below reference for agriculture is used, which may be affected by the downscaling method.

For Annex I countries, the future reference development is not as relevant since they always participate in the regime on the highest stage and have to reduce emissions independent of the reference development. Future values are only relevant for intensity targets (GDP) or for the Triptych approach (industrial and electricity production).

A different uncertainty is introduced since our future emissions are static, meaning that emissions in non-participating developing countries do not change as a result of

ambitious or relaxed emission reductions in developed countries. Stringent reductions could affect emissions of non-participating countries in two ways. There could be increased emissions through migration of energy-intensive industries or decreased emissions due to technology spill-over. Overall, we assume that this effect is small and not significantly influencing the results of this analysis.

	E	missions			CDC			GDRs		C&C 2	050 conve	ergence		Reference	
	[M	t CO2 eq.]		% ch	ange fron	n 1990	% ch	ange fron	n 1990	% ch	ange from	n 1990	% ch	ange from	1990
Year	1990	2000	2010		2020			2020			2020			2020	
Country group			BAU	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	31196	33764	43250	6%	10%	b 12%	6%	10%	12%	6%	10%	12%	55%	68%	83%
EU27	5802	5371	5767	-42%	-41%	-40%	-68%	-65%	-61%	-37%	-36%	-35%	-2%	9%	16%
GER	1253	1055	1086	-49%	-48%	-47%	-79%	-76%	-71%	-45%	-44%	-44%	-18%	-8%	-4%
UK	800	718	731	-43%	-42%	-42%	-83%	-79%	-73%	-39%	-38%	-37%	-13%	-3%	1%
JPN	1318	1427	1423	-39%	-38%	-38%	-81%	-76%	-73%	-33%	-32%	-31%	-8%	7%	11%
POL	456	392	445	-40%	-39%	-39%	-35%	-30%	-25%	-35%	-34%	-32%	5%	21%	35%
RUS	3361	2060	2288	-57%	-55%	-54%	-55%	-48%	-47%	-55%	-54%	-52%	-31%	-19%	-12%
USA	6341	7240	7403	-21%	-19%	-18%	-66%	-62%	-54%	-26%	-23%	-22%	10%	18%	23%
Annex I	19699	18545	19746	-37%	-36%	-35%	-60%	-58%	-54%	-37%	-35%	-33%	-3%	8%	13%
BRZ	680	931	1175	24%	29%	33%	42%	45%	61%	37%	42%	45%	108%	130%	135%
CHN	3546	4604	8703	59%	71%	5 73%	130%	165%	177%	82%	94%	98%	169%	218%	242%
IND	1087	1560	2343	173%	235%	261%	165%	215%	234%	152%	169%	177%	173%	235%	261%
MEX	457	562	763	19%	23%	27%	32%	44%	49%	27%	31%	34%	107%	135%	146%
ZAF	337	391	483	14%	16%	17%	21%	35%	37%	5%	8%	11%	66%	90%	99%
LDCs	682	888	1270	149%	174%	186%	152%	180%	195%	165%	176%	184%	156%	186%	202%
Non-Annex I	11263	14850	23124	79%	89%	95%	111%	126%	138%	78%	86%	91%	154%	179%	202%

	E	missions			CDC			GDRs		C&C 2	050 conve	rgence		Reference	
	[M	t CO2 eq.]		% ch	ange fron	n 1990	% ch	ange from	n 1990	% ch	ange from	1990	% ch	ange from	1990
	1990	2000	2010		2050			2050			2050			2050	
			BAU	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median I	Max
World	31196	33764	43250	-80%	-80%	-80%	-80%	-80%	-80%	-80%	-80%	-80%	90%	148%	225%
EU27	5802	5371	5767	-96%	-95%	-94%	-195%	-174%	-151%	-95%	-94%	-94%	-25%	1%	25%
GER	1253	1055	1086	-97%	-96%	-96%	-193%	-165%	-147%	-96%	-95%	-95%	-45%	-20%	1%
UK	800	718	731	-96%	-95%	-95%	-206%	-176%	-155%	-95%	-94%	-94%	-41%	-15%	6%
JPN	1318	1427	1423	-96%	-94%	-94%	-214%	-185%	-158%	-94%	-93%	-93%	-41%	-18%	5%
POL	456	392	445	-97%	-95%	-95%	-182%	-156%	-132%	-95%	-94%	-94%	-13%	17%	43%
RUS	3361	2060	2288	-98%	-97%	-97%	-136%	-122%	-112%	-97%	-97%	-97%	-31%	-1%	20%
USA	6341	7240	7403	-97%	-96%	-96%	-198%	-167%	-147%	-96%	-96%	-95%	-19%	8%	32%
Annex I	19699	18545	19746	-97%	-96%	-95%	-175%	-157%	-139%	-95%	-95%	-95%	-18%	10%	31%
BRZ	680	931	1175	-81%	-77%	-76%	-145%	-125%	-95%	-74%	-73%	-70%	131%	201%	256%
CHN	3546	4604	8703	-81%	-76%	-76%	-10%	10%	92%	-74%	-73%	-67%	209%	331%	497%
IND	1087	1560	2343	-8%	7%	51%	146%	242%	323%	1%	2%	5%	478%	669%	1108%
MEX	457	562	763	-84%	-81%	-80%	-156%	-140%	-106%	-78%	-78%	-75%	145%	243%	321%
ZAF	337	391	483	-87%	-83%	-83%	-41%	-7%	19%	-82%	-81%	-78%	173%	295%	434%
LDCs	682	888	1270	80%	88%	115%	362%	472%	544%	35%	43%	54%	433%	596%	778%
Non-Annex I	11263	14850	23124	-55%	-52%	-50%	23%	51%	85%	-56%	-54%	-53%	278%	386%	557%

Appendix B Emission allowances distributed with EVOC

Table 2. Emission allowances as percentage change from 1990 for 2020 and 2050 under CDC, C&C and GDRs excluding LUCF $% \left(\mathcal{L}_{1}^{2}\right) =0$

For methodological reasons an overall carbon budget of 1600 Gt by 2050 is assumed instead of 1660 Gt by 2050 as estimated in Chapter 2.

	E	missions			CDC			GDRs		C&C 2	050 conve	ergence		Reference	e
	[M	t CO2 eq.]		% ch	ange fron	n BAU	% ch	ange fron	n BAU	% ch	ange fron	n BAU		% change from	m BAU
Year	1990	2000	2010		2020			2020			2020			2020	
Country group			BAU	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	31196	33764	43250	-39%	-35%	-32%	-39%	-35%	-32%	-39%	-35%	-32%			
EU27	5802	5371	5767	-48%	-46%	-40%	-72%	-66%	-60%	-43%	-42%	-36%			
GER	1253	1055	1086	-45%	-43%	-37%	-78%	-73%	-66%	-41%	-39%	-33%			
UK	800	718	731	-43%	-40%	-35%	-83%	-77%	-69%	-38%	-36%	-30%			
JPN	1318	1427	1423	-44%	-42%	-33%	-83%	-77%	-71%	-37%	-36%	-27%			
POL	456	392	445	-55%	-50%	-42%	-47%	-42%	-38%	-50%	-45%	-38%			
RUS	3361	2060	2288	-48%	-45%	-37%	-41%	-37%	-32%	-46%	-43%	-35%			
USA	6341	7240	7403	-34%	-32%	-28%	-72%	-67%	-59%	-37%	-34%	-31%			
Annex I	19699	18545	19746	-43%	-40%	-35%	-65%	-59%	-54%	-41%	-40%	-34%			
BRZ	680	931	1175	-45%	-44%	-41%	-39%	-34%	-30%	-40%	-38%	-34%			
CHN	3546	4604	8703	-50%	-46%	-38%	-19%	-17%	-13%	-42%	-39%	-32%			
IND	1087	1560	2343				-7%	-6%	-3%	-23%	-20%	-8%			
MEX	457	562	763	-50%	-47%	-43%	-42%	-38%	-33%	-45%	-44%	-38%			
ZAF	337	391	483	-41%	-39%	-31%	-32%	-29%	-25%	-44%	-43%	-36%			
LDCs	682	888	1270	-5%	-5%	-1%	-2%	-2%	-2%	-6%	-4%	6%			
Non-Annex I	11263	14850	23124	-36%	-32%	-29%	-21%	-19%	-17%	-37%	-33%	-30%			

	E	missions			CDC			GDRs		C&C 2	050 conve	rgence		Reference	e
	[M]	t CO2 eq.]	% ch	ange fron	n BAU	% ch	ange from	BAU	% ch	ange from	BAU		% change froi	n BAU
	1990	2000	2010		2050			2050			2050			2050	
			BAU	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	31196	33764	43250	-94%	-92%	-89%	-94%	-92%	-89%	-94%	-92%	-89%			
EU27	5802	5371	5767	-96%	-95%	-94%	-190%	-172%	-164%	-95%	-94%	-92%			
GER	1253	1055	1086	-96%	-95%	-94%	-211%	-180%	-173%	-95%	-94%	-92%			
UK	800	718	731	-96%	-94%	-94%	-219%	-188%	-181%	-95%	-93%	-91%			
JPN	1318	1427	1423	-95%	-92%	-92%	-226%	-203%	-190%	-94%	-91%	-88%			
POL	456	392	445	-97%	-96%	-95%	-157%	-148%	-130%	-96%	-95%	-93%			
RUS	3361	2060	2288	-98%	-97%	-97%	-130%	-122%	-115%	-97%	-97%	-95%			
USA	6341	7240	7403	-98%	-96%	-96%	-176%	-162%	-155%	-97%	-96%	-95%			
Annex I	19699	18545	19746	-97%	-96%	-95%	-164%	-152%	-148%	-96%	-95%	-93%			
BRZ	680	931	1175	-94%	-92%	-91%	-113%	-108%	-98%	-93%	-91%	-88%			
CHN	3546	4604	8703	-96%	-95%	-94%	-80%	-75%	-54%	-96%	-93%	-91%			
IND	1087	1560	2343	-92%	-85%	-76%	-66%	-61%	-29%	-92%	-86%	-82%			
MEX	457	562	763	-95%	-95%	-93%	-115%	-111%	-102%	-95%	-93%	-91%			
ZAF	337	391	483	-97%	-96%	-94%	-84%	-78%	-74%	-96%	-95%	-92%			
LDCs	682	888	1270	-79%	-73%	-60%	-27%	-21%	-11%	-84%	-80%	-71%			
Non-Annex I	11263	14850	23124	-93%	-90%	-87%	-74%	-70%	-60%	-93%	-90%	-88%			

Table 3. Emission allowances as percentage change from BAU for 2020 and2050 under CDC, C&C and GDRs excluding LUCF

	E	missions	;		CDC			GDRs		C&C 2	050 conve	rgence		Reference	
	[t C	O2eq./ca	ıp]	t	CO2eq./c	ap	t	CO2eq./c	ар	t	CO2eq./ca	ар	t	CO2eq./ca	р
Year	1990	2000	2010		2020			2020			2020			2020	-
Country group	1	incl. Ky	oto target	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	6.0	5.6	6.2	4.2	4.5	5 4.7	4.2	4.5	4.7	4.2	4.5	4.7	6.4	6.9	7.6
EU27	12.3	11.1	10.4	6.7	6.8	6.8	3.7	4.1	4.4	7.1	7.4	7.5	11.2	12.5	13.2
GER	15.8	12.8	11.9	7.6	7.7	7 7.7	3.1	3.5	4.2	8.0	8.2	8.3	12.2	13.5	14.1
UK	13.9	12.0	11.4	7.3	7.4	1 7.4	2.2	2.7	3.4	7.7	7.9	8.0	11.2	12.3	12.9
JPN	10.7	11.3	9.6	6.2	6.3	6.3	1.9	2.4	2.7	6.7	6.9	7.0	9.3	10.7	11.1
POL	12.0	10.2	11.2	7.1	7.2	2 7.3	7.7	8.3	8.9	7.7	7.9	8.0	12.5	14.5	16.1
RUS	22.7	14.1	15.9	9.9	10.2	2 10.5	10.3	11.9	12.0	10.0	10.7	11.0	15.7	18.5	20.2
USA	25.4	25.7	24.0	14.9	15.3	3 15.4	6.4	7.2	8.7	14.1	14.6	14.9	20.9	22.5	23.4
Annex I	16.5	14.9	14.2	9.1	9.2	<u>9.3</u>	5.7	6.1	6.5	9.1	9.4	9.6	14.0	15.4	16.3
BRZ	4.5	5.3	5.9	3.8	3.9	9 4.0	4.3	4.5	4.6	4.0	4.3	4.4	6.4	6.9	7.2
CHN	3.1	3.6	6.5	3.9	4.3	3 4.4	5.5	6.6	7.1	4.3	4.9	5.1	6.4	8.0	8.7
IND	1.3	1.5	2.0	2.2	2.7	7 2.9	2.1	2.6	2.7	2.0	2.2	2.3	2.2	2.7	2.9
MEX	5.5	5.7	6.9	4.4	4.5	5 4.7	4.9	5.4	5.6	4.6	4.9	5.0	7.7	8.6	9.2
ZAF	9.6	8.9	9.2	5.8	6.0) 6.1	6.1	7.1	7.2	5.4	5.6	5.8	8.4	9.9	10.4
LDCs	1.3	1.3	1.5	1.7	1.9	9 2.0	1.7	1.9	2.0	1.8	1.9	2.0	1.7	2.0	2.1
Non-Annex I	2.8	3.1	4.3	3.2	3.5	5 3.6	3.7	4.2	4.4	3.2	3.4	3.5	4.5	5.1	5.6

	E	missions	;		CDC			GDRs		C&C 2	050 conver	gence		Reference	
		O2eq./ca		t (CO2eq./ca	ар	t	CO2eq./ca	ар	t	CO2eq./ca	р	t	CO2eq./ca	р
	1990	2000	2010		2050			2050			2050			2050	
		incl. Ky	oto target	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	6.0	5.6	6.2	0.6	0.7	0.7	0.6	0.7	0.7	0.6	0.7	0.7	6.5	8.1	11.7
EU27	12.3	11.1	10.4	0.4	0.6	0.6	-10.3	-8.4	-5.7	0.6	0.7	0.7	9.0	11.1	14.1
GER	15.8	12.8	11.9	0.4	0.6	0.6	-12.7	-9.5	-6.7	0.6	0.7	0.7	8.6	11.2	14.5
UK	13.9	12.0	11.4	0.4	0.6	0.6	-12.6	-9.6	-6.9	0.6	0.7	0.7	8.0	10.3	13.2
JPN	10.7	11.3	9.6	0.4	0.6	0.6	-11.3	-8.7	-5.9	0.6	0.7	0.7	6.2	8.3	10.7
POL	12.0	10.2	11.2	0.4	0.6	0.6	-10.5	-6.9	-4.0	0.6	0.7	0.7	11.2	14.5	18.3
RUS	22.7	14.1	15.9	0.4	0.6	0.6	-8.2	-4.6	-2.9	0.6	0.7	0.7	15.8	21.0	27.8
USA	25.4	25.7	24.0	0.4	0.6	0.6	-14.8	-11.2	-7.5	0.6	0.7	0.7	13.6	17.5	21.4
Annex I	16.5	14.9	14.2	0.4	0.6	0.6	-9.2	-7.6	-5.3	0.6	0.7	0.7	10.9	13.9	17.6
BRZ	4.5	5.3	5.9	0.4	0.6	0.6	-1.2	-0.6	0.1	0.6	0.7	0.7	5.7	7.2	9.5
CHN	3.1	3.6	6.5	0.4	0.6	0.6	2.4	2.7	3.4	0.6	0.7	0.7	7.5	10.5	16.2
IND	1.3	1.5	2.0	0.6	0.7	1.1	1.6	2.3	2.9	0.6	0.7	0.7	3.5	5.4	8.4
MEX	5.5	5.7	6.9	0.4	0.6	0.6	-1.5	-1.2	-0.2	0.6	0.7	0.7	7.4	9.8	13.7
ZAF	9.6	8.9	9.2	0.4	0.6	0.6	1.9	3.5	4.5	0.6	0.7	0.7	8.7	14.3	20.0
LDCs	1.3	1.3	1.5	0.8	1.0	1.0	2.1	2.8	3.4	0.6	0.7	0.7	2.5	3.6	4.6
Non-Annex I	2.8	3.1	4.3	0.6	0.7	0.8	1.9	2.3	2.7	0.6	0.7	0.7	5.6	7.1	10.5

Table 4. Emission allowances as per capita emissions for 2020 and 2050under CDC, C&C and GDRs excluding LUCF

	F	Population	۱	Cumulative	emissions		CDC			GDRs			050 conve	
	mi	llion peop	ole	Mt CO2	eq./cap	Ν	It CO2eq./	сар		Mt CO2eq	/cap	М	t CO2eq./o	cap
Year	2000	2010	2020	1990-2000	1990-2010		1990-202	0		1990-20	20		1990-2020)
Country group	Median	Median	Median	Median	Median	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	6033	6873	7854	53	101	13	6 156	6 172	2	36 13	8 139	136	156	172
EU27	482	499	512	115	219	29	3 32	7 348	3 2	290 29	2 294	301	334	358
GER	82	84	86	139	261	35) 384	407	' :	334 33	5 340	353	389	416
JK	60	61	63	128	239	32	4 356	5 378	3 3	302 30	3 307	327	362	388
JPN	127	130	132	109	214	29) 317	7 336	6 1	276 27	8 280	293	324	348
POL	38	38	39	114	217	30	7 338	3 360		309 31	5 322	310	345	371
RUS	146	145	152	168	317	42	7 469	9 498	3 4	43 43	8 442	428	473	506
USA	282	310	338	237	449	59	7 663	3 709) !	53 55	6 566	592	654	700
Annex I	1248	1313	1392	150	285	38	2 422	2 449) :	370 37	1 375	382	423	454
BRZ	174	203	237	44	87	11	3 134	1 146	· ·	20 12	1 123	119	138	153
CHN	1263	1368	1511	34	77	11	7 134	146	5 ·	26 13	2 133	120	140	156
IND	1016	1186	1375	13	26	4	1 52	2 65	5	40 4	3 44	40	50	60
MEX	98	111	130	50	100	13	5 15	5 170) .	38 14	1 142	137	158	175
ZAF	44	52	67	81	149	18	3 210) 230) .	83 18	8 189	180	205	225
LDCs	647	815	994	11	21	3	<u>2</u> 4 [.]	1 50		32 3	3 33	33	42	51
Non-Annex I	4734	5499	6390	27	56	8	2 97	7 111		85 8	7 88	82	97	' 111

	F	Population	า	Cumulative	emissions		CDC			GDRs			050 convei	
	mi	llion peop	ole	Mt CO2	eq./cap	N	It CO2eq./	cap	М	t CO2eq./c	ар	M	t CO2eq./ca	ар
	2000	2010	2050	1990-2000	1990-2010		1990-205	0		1990-2050)		1990-2050	
	Median	Median	Median	Median	Median	Min	Median	Max	Min	Median	Max	Min	Median	Max
World	6033	6873	10823	53	101	20	1 205	5 208	202	204	205	201	204	205
EU27	482	499	537	115	219	36	7 370) 372	126	157	215	392	396	398
GER	82	84	91	139	261	42	3 430	433	129	156	227	452	456	457
UK	60	61	67	128	239	39	9 402	2 404	81	112	185	423	427	428
JPN	127	130	134	109	214	35	5 357	' 359	95	119	172	380	384	384
POL	38	38	38	114	217	38	383	385	266	306	343	406	411	411
RUS	146	145	183	168	317	52	3 525	527	450	483	527	549	556	563
USA	282	310	419	237	449	74	6 749	752	291	331	453	759	766	768
Annex I	1248	1313	1637	150	285	47	476	6 479	231	266	319	495	499	501
BRZ	174	203	350	44	87	16	3 165	5 168	150	163	180	181	184	185
CHN	1263	1368	1976	34	77	16	1 163	165	239	273	279	183	188	189
IND	1016	1186	1871	13	26	10	4 108	3 111	114	127	142	82	86	87
MEX	98	111	193	50	100	18	7 190) 192	175	182	200	205	208	209
ZAF	44	52	106	81	149	25	3 256	260	302	347	354	258	264	264
LDCs	647	815	1495	11	21	8	5 90	94	105	118	128	74	77	78
Non-Annex I	4734	5499	9071	27	56	14	1 144	148	176	189	198	137	139	140

Note: Cumulative emissions are divided by the absolute number of people in that year. E.g. for 2020 Cumulative emission from 1990 to 2020 are divided by the population of 2020.

	Cumulative	emissions		CDC			GDRs		C&C 20	50 conver	gence
	Gt CO	•		Gt CO2 ec			Gt CO2 eq			at CO2 eq.	
Year	1990-2000	1990-2010		1990-2020)		1990-2020		1	990-2020	
Country group	Median M	<i>l</i> edian	Min	Median	Max	Min	Median	Max	Min	Vedian I	Max
World total	319	692	1068	1081	1089	1070	1083	1092	1068	1081	1089
Figure 02 EU27	55	109	153	154	154	149	150	150	154	155	155
Figure 04 GER	11	22	30	30	30	29	29	29	30	30	31
Figure 05 UK	8	15	21	21	21	19) 19	19	21	21	21
Figure 07 JPN	14	28	38	38	38	36	37	37	39	39	39
Poland	4	8	12	12	12	12	2 12	12	12	12	12
EVOC 05 RUS	25	46	65	66	66	65	67	67	65	66	66
Figure 01 USA	67	139	202	204	205	187	' 188	191	200	202	203
UNFCCC Annex I	187	375	532	535	536	515	517	521	532	535	538
EVOC 12 BRZ	8	18	28	28	28	28	3 29	29	28	29	29
EVOC 24 CHN	42	106	177	182	183	190) 199	201	181	186	187
EVOC 25 IND	13	31	56	60	61	56	59	61	55	58	58
EVOC 13 MEX	5	11	18	18	18	18	18	19	18	18	18
EVOC 17 ZAF	4	8	12	12	12	12	. 13	13	12	12	12
Least Developed Countries	7	17	32	33	33	32	33	33	32	33	33
UNFCCC Non Annex I	129	311	525	536	542	541	556	564	525	535	540

	Cumulative	emissions		CDC			GDRs		C&C 2	050 convei	rgence
	Gt CC	02 eq.	(Gt CO2 eq		0	Gt CO2 eq.		(Gt CO2 eq.	
	1990-2000	1990-2010	-	1990-2050)	1 1	990-2050			1990-2050	
	Median	Median	Min	Median	Max	Min	Median	Max	Min	Median	Max
World total	319	692	1580	1599	1607	1583	1602	1610	1580	1599	1607
Figure 02 EU27	55	109	188	191	192	65	81	110	201	203	204
Figure 04 GER	11	22	37	37	37	11	13	20	39	39	39
Figure 05 UK	8	15	25	26	26	5	7	12	27	27	27
Figure 07 JPN	14	28	47	47	48	13	16	23	50	50	51
Poland	4	8	15	15	15	10	12	13	16	16	16
EVOC 05 RUS	25	46	79	81	82	68	73	80	83	85	86
Figure 01 USA	67	139	252	256	257	99	112	153	257	259	260
UNFCCC Annex I	187	375	659	669	673	321	370	443	689	694	698
EVOC 12 BRZ	8	18	39	40	40	36	39	43	43	44	44
EVOC 24 CHN	42	106	243	255	256	360	412	421	276	284	286
EVOC 25 IND	13	31	143	150	154	156	174	195	113	118	119
EVOC 13 MEX	5	11	24	25	25	23	24	26	27	27	27
EVOC 17 ZAF	4	8	17	17	17	20	23	24	17	18	18
Least Developed Countries	7	17	84	90	92	105	117	127	74	76	77
UNFCCC Non Annex I	129	311	898	917	919	1123	1207	1268	873	890	893

Table 6. Cumulative emission allowances from 1990 to 2020 and 2050 under CDC, C&C and GDRs excluding LUCF $% \mathcal{L} = \mathcal{L}$

	Cumulative emissions CDC			GDRs				C&C 2050 convergence						
	Gt CC	02 eq.		Gt CO2 eq.			Gt CO2 eq.				Gt CO2 eq.			
Year	1990-2000	1990-2010	2010-2020			2010-2020			2010-2020					
Country group	Median	Median	Min	Median	Max		Min	Ν	<i>l</i> edian	Max	Min	Median	Max	
World total	319	692	3	76 3	87	395		377	388	396	376	389	39	
Figure 02 EU27	55	109		43	44	44		38	39	4() 45	5 45	5 46	
Figure 04 GER	11	22		8	8	8		7	7	-	7 9) g) (
Figure 05 UK	8	15		6	6	6		4	4	Į	5 6	6 6	; (
Figure 07 JPN	14	28		10	11	11		8	8	ę	9 11	11	1	
Poland	4	8		4	4	4		4	4	4	1 4	4		
EVOC 05 RUS	25	46		19	19	20		19	20	2	1 19	20) 20	
Figure 01 USA	67	139		63	64	65		48	48	52	2 61	63	6	
UNFCCC Annex I	187	375	1	57 1	60	161		139	140	144	4 157	' 161	163	
EVOC 12 BRZ	8	18		10	10	11		11	11	1	1 10) 11	1	
EVOC 24 CHN	42	106		71	76	76		84	92	94	4 75	5 80	8	
EVOC 25 IND	13	31		25	29	30		25	28	29	9 25	5 27	2	
EVOC 13 MEX	5	11		7	7	7		7	7	-	7 7	' 7	, -	
EVOC 17 ZAF	4	8		4	4	5		4	5	ł	5 4	4	4	
Least Developed Countries	7	17		14	15	16		14	15	10	6 15	5 15	i 10	
UNFCCC Non Annex I	129	311	2	14 2	24	229		231	244	25	2 215	5 224	230	

	Cumulative emissions		CDC				GDRs				C&C 2050 convergence			
	Gt CO2 eq.		Gt CO2 eq.				Gt CO2 eq.				Gt CO2 eq.			
	1990-2000	1990-2010	2010-2050				2010-2050				2010-2050			
	Median	Median	Min	Median	Max	Ν	Min	Median	Max	Min	N	1edian	Max	
World total	319	692	8	88 90	59	13	889	906	91	4	888	907	915	
Figure 02 EU27	55	109		79 8		83	-45	-30		C	91	94	94	
Figure 04 GER	11	22		15 1	5	16	-11	-9	-	2	17	17	′ 18	
Figure 05 UK	8	15		11 1 [.]		11	-10	-8	-	3	12	12	12	
Figure 07 JPN	14	28		19 20)	20	-15	-12	-	5	22	23	23	
Poland	4	8		6	7	7	2	3		5	7	8	8	
EVOC 05 RUS	25	46		33 3	5	36	22	27	3	4	37	38	39	
Figure 01 USA	67	139	1	13 11	7 1	17	-41	-27	1	3	117	120	120	
UNFCCC Annex I	187	375	2	84 294	l 2	98	-55	-7	6	6	314	319	323	
EVOC 12 BRZ	8	18		21 22	2	22	18	21	2	5	25	26	26	
EVOC 24 CHN	42	106	1	37 149) 1	49	254	305	31	4	170	178	180	
EVOC 25 IND	13	31	1	12 119) 1	23	126	143	16	4	82	87	88	
EVOC 13 MEX	5	11		13 14	ļ.	14	12	12	1	5	16	16	16	
EVOC 17 ZAF	4	8		9 9)	9	12	15	1	6	9	10	10	
Least Developed Countries	7	17		67 73	3	74	87	99	11	D	56	59	60	
UNFCCC Non Annex I	129	311	5	87 60	56	07	813	895	95	5	562	579	582	

Table 7. Cumulative emission allowances from 2010 to 2020 and 2050 under CDC, C&C and GDRs excluding LUCF

Appendix C Comparison of data from EcoEquity and EVOC

Development threshold EcoEquity	China	India	World 7,500	original data roughtly calculated
Ecofys			7,500	
GDP, 2005, PPP, billion \$ Ecofys (ppp 2000) Word Bank (PPP 2005) (WDI, 2008) Word Bank	5,333 5,333 5,333	2,441 2,441 2,341	55,588 56,265 54,980	
GDP, 2020, PPP, billion \$ EcoEquity Ecofys (ppp 2000)	12,971 17,529	6,623 8,524	99,708 95,150	
EcoEquity, % of global Ecofys, % of global	13% 18%	7% 9%	100% 100%	
GDP per capita, 2010, PPP EcoEquity Ecofys (ppp 2000)	5,899 5,864	2,818 3,005	9,929 10,095	
EcoEquity, % change from global average Ecofys, % change from global average	-41% -42%	-72% -70%	0% 0%	
Population (% of global), 2010 EcoEquity Ecofys	19.7% 19.7%	17.2% 17.3%	100% 100%	
RCI (share of global) EcoEquity (2010) Ecofys (2010)	5.5%	0.5%	100%	
EcoEquity (2030) Ecofys (2030)	15.2% 14.5%	2.3% 3.5%	100% 100%	
Emissions, roughly, GtCO2 IEA 2000 EcoEquity 2000 EcoEquity 2030, BAU EcoEquity 2030, GDRs	3 3 12 7	1 1 3 3	23 29 50 17	
Emissions, MtCO2e Ecofys 2000 Ecofys 2030, BAU (median) Ecofys 2030, GDRs (median)	5 14 8	1 5 4	32 63 22	
Emissions, growth rate 2000-2030 EcoEquity, BAU Ecofys, BAU	304% 205%	520% 313%	69% 98%	
EcoEquity, GDRs Ecofys, GDRs	129% 77%	373% 216%	-41% -31%	
Emissions, change to BAU, 2030 EcoEquity, % Ecofys, %	-43% -42%	-24% -24%	-65% -65%	
EcoEquity, GtCO2 Ecofys, GtCO2e	5 6	1 1	32 41	
Gases included EcoEquity: Ecofys:	CO2 only CO2eq (CO2, CH4,	N2O, PFCs, HI	FCs, SF6)	

Document:	WWF carbon budget 2009-02-04.doc	
Last saved:	October 1, 2009	Sara Moltmann
Author:	SMo	